

IFOR: Iterative Flow Minimization for Robotic Object Rearrangement

Current Scene

Target Scene

• Input: RGBD of the target and current

Current Scene

Target Scene

- Input: RGBD of the target and current
- **Objective:** Rearrange to the target configuration

Current Scene

Target Scene

- **Input:** RGBD of the target and current
- **Objective:** Rearrange to the target configuration

Setting Dinning Table

Cleaning House

Organising Cabinets

Canonical task for Embodied AI [1]

[1] Batra, Dhruv et al. "Rearrangement: A Challenge for Embodied AI"

How to Rearrange?

Current Scene

Target Scene

Need to recognize the change in pose of objects.

Challenges

- Unseen objects
- Traditional pose estimator won't work
- Object-invariant intermediate representation like flow?
- Solve rigid-body transform from flow (+ segmentation) .

Challenges

- Flow values large
- Traditional flow estimators won't work
- A suitable neural flow estimator with trained correct data?
- Works very well! Transfers from sim-to-real in zero shot

Iterative Flow Minimization for Robotic Object Rearrangement

<section-header>

Iterative Flow Minimization for Robotic Object Rearrangement

Iterative Flow Minimization for Robotic Object Rearrangement

Off-the-shelf Unseen Object Segmentation [1]

[1] Xiang et al. "Learning RGB-D feature embeddings for unseen object instance segmentation"

Iterative Flow Minimization for Robotic Object Rearrangement

IFOR: Optical Flow

Synthetic Dataset For Rearrangement — NVISII Renderer

50K Samples for Training

IFOR: Optical Flow

[1] Teed, Zach and Deng, Jia "RAFT: Recurrent All-Pairs Field Transforms for Optical Flow"

IFOR: Optical Flow

Key Observation:

Compares each pixel to all other pixels => In theory, learn large flows

[1] Teed, Zach and Deng, Jia "RAFT: Recurrent All-Pairs Field Transforms for Optical Flow"

Iterative Flow Minimization for Robotic Object Rearrangement

Solve for rigid-body transformation: multi-view geometry + RANSAC

Iterative Flow Minimization for Robotic Object Rearrangement

Example

IFOR (ours)

8X

Target Image

In blind user study, IFOR (ours) was consistently rated to perform good!

>92% of time users preferred IFOR (ours) over prior-art

Project Page: https://imankgoyal.github.io/ifor.html

Poster: 23 June 2022, 2:30 - 5:30 PM, 144B